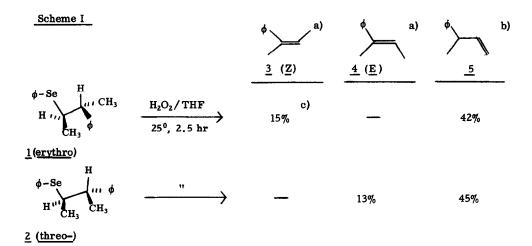
REACTIONS OF SELENOXIDES; THERMAL <u>SYN-</u>ELIMINATION AND H₂¹⁸O EXCHANGE. K. B. Sharpless, M. W. Young, and R. F. Lauer Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received in USA 13 March 1973; received in UK for publication 19 April 1973)

During their synthesis of a chiral steroidal selenoxide, Jones and co-workers discovered the selenoxide analog of the sulfoxide <u>syn</u>-elimination reaction.¹ In the case reported by these authors, the selenoxide decomposed to olefin even at 0° . Because of our interest in the development of new sclenium reagents for organic synthesis,² we wished to know more about this gentle olefin forming process. We have prepared a variety of alkyl phenyl selenoxides and have found that they all decomposed readily to olefins at room temperature (Table I).

Table I. Selenoxide Decomposition a)


Selenide ^{b)}	Olefins (ratio)	Total yield (%)
φ-Se 6	(61) (28) (11)	71
¢-Se √	\mathbf{r}	~ 100
\$-S\$		94
$\phi - Se \underbrace{\frac{8}{9}}_{\underline{9}} O$	(50) (50) (50) (50) (100) (0) (0) (0) (0) (0) (0) (0)	95

a) The selenide was dissolved in THF, and excess (10 equiv.) of 70% H_2O_2 was added while cooling in an ice bath. Upon completion of oxidation, as determined by TLC, the reaction mixtures were then allowed to stand at room temperature for 3 hrs. Yields and product ratios were determined by glc, relative to an internal standard.

¢

b) The selenides were prepared by reaction of the corresponding tosylate $(\underline{7})$, halide $(\underline{6}, \underline{8})$ or unsaturated ketone (9) with ϕ SeNa in ethanol (for a convenient preparation of this reagent see ref. 2c). They are all new compounds (except $\underline{6}$) and have been characterized by analytical and spectral means.

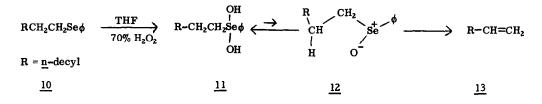
The <u>syn</u>- nature of the elimination was proven unambiguously by applying the sequence used by Cram for determining the stereochemistry of the amine oxide and related pyrolytic eliminations.³ The <u>erythro-</u> (<u>1</u>) and <u>threo-</u> (<u>2</u>) phenyl selenides were prepared by reaction of the corresponding tosylates⁴ with the sodium salt of selenophenol^{2C} in ethanol. Oxidation of the diastereomeric selenides <u>1</u> and <u>2</u> to the corresponding selenoxides was effected with excess (10 equiv.) 70% H₂O₂ in tetrahydrofuran. As revealed in Scheme I, formation of the 2-phenyl-2-butenes occurred by stereospecific

- a) A mixture of olefins $\underline{3}$ and $\underline{4}$ was prepared by Wittig reaction of ethylidene triphenyl phosphorane with acetophenone. The higher boiling isomer is known (ref. 3b) to be \underline{E} olefin $\underline{4}$.
- b) Prepared via Wittig reaction from 2-phenyl propanal.
- c) These are absolute yields determined by glc relative to an internal standard. All three olefins were resolved by a 6' x 1/8" 10% UC-W98/ Chromosorb W column at 100°. The relative retention times were $\frac{4}{2} > \frac{3}{2} > \frac{5}{2}$.

<u>syn-</u> elimination. The <u>erythro-</u> isomer <u>1</u> gave only the <u>Z</u>-olefin <u>3</u>, and the <u>threo-</u> isomer <u>2</u> gave only the <u>E</u>-olefin <u>4</u>, while the major product in both cases was 3-phenyl-1-butene <u>5</u>.

Examination of the examples in Table I reveals the close similarity between the olefin

mixtures obtained from selenoxide eliminations and those obtained from the mechanistically related


eliminations of amine oxides⁵ and sulfoxides.⁶ The olefin mixtures obtained from the oxidations of

selenides $\underline{6}$ and $\underline{7}$ (Table I) are clearly not those expected from a process having E_1 or E_2 character.

The difficulty of obtaining chiral selenoxides has been reasonably attributed to their ready racemization through an achiral hydrate.^{1, 7} We have made several observations which further support the importance of hydrates in selenoxide chemistry.

The primary selenide <u>10</u> did not behave like the secondary selenides (Table I) upon oxidation with H_2O_2 ; after 16 hr. at room temperature only 6% of the expected olefin <u>13</u> had formed.

Scheme II

If, however, excess anhydrous MgSO₄ was added shortly after H_2O_2 addition was complete, olefin <u>13</u> was formed in 77% yield after only 2.5 hr. at room temperature. In this case, it would appear that the hydrate <u>11</u> is actually the predominant species in solution. The dehydrating agent (MgSO₄) shifts the equilibrium toward the selenoxide 12.

Finally, the experiments outlined in Scheme III indicate that H₂¹⁸O exchange of the

selenoxide and seleninic acid derived from <u>14</u> and <u>16</u> respectively occurs at a rate comparable to the rapid [2,3] sigmatropic rearrangements²⁸ leading to the observed products (15 and 17).

Acknowledgement. We are grateful to the National Science Foundation (GP-30485X), Eli Lilly, Hoffmann-La Roche, and the Mobil Foundation for support of this work. We are indebted to Patrick A. Marcotte of M.I.T. who prepared the <u>erythro-</u> and <u>threo-</u>3-phenyl-2-butanols required for preparation of selenides <u>1</u> and 2.

References

- 1) D. Neville Jones, D. Mundy, and R. D. Whitehouse, <u>Chem. Comm.</u>, 86 (1970).
- a) K. B. Sharpless and R. F. Lauer, <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 7154 (1972); b) K. B. Sharpless and R. F. Lauer, <u>J. Org. Chem.</u>, <u>37</u>, 3973 (1972); c) K. B. Sharpless and R. F. Lauer, J. Amer. Chem. Soc., in press.
- a) D. J. Cram, <u>J. Amer. Chem. Soc.</u>, <u>71</u>, 3863 (1949); b) <u>ibid.</u>, <u>71</u>, 3883 (1949);
 c) <u>ibid.</u>, <u>74</u>, 2137 (1952); d) D. J. Cram and J. E. McCarty, <u>J. Amer. Chem. Soc.</u>, <u>76</u>, 5740 (1954).
- 4) Cram's procedure (ref. 3a) for preparation of the 2-tosyloxy-3-phenyl butanes was followed except that we prepared the racemic <u>erythro</u> (mp 39-41⁰) and <u>threo</u> (mp 46-47⁰) tosylates and not the resolved tosylates. Of course, the <u>erythro</u>-tosylate gives rise to the threo-selenide 2 and vice-versa.
- 5) C. H. DePuy and R. W. King, Chem. Rev., 60, 431 (1960).
- 6) D. W. Emerson, A. P. Craig, and I. W. Potts, J. Org. Chem., 32, 102 (1967).
- 7) M. Oki and H. Iwamura, <u>Tet. Lett.</u>, 2917 (1966).